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TEACHING CHILOREN'TO BE MATHEMATICIANS

VS. TEACHING ABOUT MATHEMATICS

by

Seymour Papert

1. Preface

Being a mathematician is no more-definable as."knowing" a set

of mathemati6al:factS than being a poet is definable as knowing a set

of linguistic facts. Some modern math ed reformeri will give this

statement a too easy'assent with the comment: "Yes, they must under-

stand, not merely know." But this misses the capital point that being

a mathematician, again like being a poet, or a composer or an engineer,
.

means doing, rather than knowing or understanding. This essay is an

attempt to explore some ways in which one might be able to put children

in a better position to do mathematics rather than merely to learn

about it.

The plan of the essay is to develop some examples of new kinds

of mathematical activity for children, and then to discuss the-general

issues alluded to in the preceding paragraph. Without the examples,

abstract statements abOut "doing'," "knowing," and "understanding"

mathematics cannot be expected to have more than a suggestive meaning.

On the other hand the description of the examples will be easier to

follow if the reader has a prior idea of their intention. And so I

shall first sketch, very impressionistically, my position on some of

the major issues. In doing so I shall exploit the dialectical device

employed in the previous paragraph to obtain a little more precision

of statement by explicitly excluding the most likely misinterpretation.

It is generally assumed in our society that every child should,

and can, have experience of creative work in language and plastic arts.
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It is equally generally assumed that very'few people can work creatively

in mathematits. I believe that there has been an unwitting conspiracy

ofpsychologists and mathematicians in maintaining this assumption. The

psychologists contribute to it out of genuine ignorance of what creative

mathematical work might be like. The mathematiCians, very often, do so

out of elitism, in the form of a deep conviction that mathematical

creativity is the privilege of a tiny minority.

Here again, it is necessary, if we want any clarity, to ward off

a too easy, superficial assent from math ed'reformers who say-, "Yes,

that's why we must use The Method of Discovery." For, when "Discovery"

means discovery this is wonderful;, but in reality "Discovery" usually

means something akin to the following fantasy about.a.poetry class:

the diseovery-method teat-her has perfected- a. series of questions that

lead the class to discover the line "Mary had-a little lamb." My point

is not that this would .be good,or bad, but that no one would confuse it

with creative work in poetry.

Is it possible for children to -do creative mathematics (that is

to say: to do mathematics) at .all stages of their scholastic (and even

adult!) lives? I will argue that the answer is yes, but a great deal

of creative mathematical work by adult mathematicians-is necessary to

make it possible. The reason for the qualification is that the traditional

branches of mathematics do not provide the most fertile ground for the

easy, prolific growth of mathematical traits of mind. We may have to

develop quite new branches of mathematics with the special property

that they allow beginners more space to romp creatively, than"does number

theory or modernistic algebra. In the following pages will be found

some specific examples which it would be pretentious to call "new

pedagogical oriented branches of mathematics" but which will suggest to

cooperative readers what this phrase could mean.

Obstreperous readers will have no trouble finding objections.

Mathematical elitists will say: "How dare you bring these trivia to

disturb our contemplation of the true mathematical structures." Practical

people will say: "Romping? Pomping? Who needs it? What about practical

skills in arithmetic?"

The snob and the anti-snob are expressing the same objection in



different words. Let me paraphrase it, "Traditional schools have found

mathematics hard to teach to so-called average children. Someone brings

along a new set of activities, which seem to be fun and easy to learn.

He declares them to be mathematics! Well, that does not make them

mathematics, and it doesn't turn them into solutions to any .of the hard

problems facing the world of math ed."

This argument raises serious issues, from which I single out a

question which I shall ask in a number of different forms:

In becoming a mathematician does one learn

something other and more general than the
specific content of particular mathematical
topics? Is there such a thing as a
Mathematical Way of Thinking? Can this be
learned and taught? Once ,one -has acquired

itr,does-it then become quite easy to learn
particular_ topics -- like Tthe ones that
obsess our elitist and practical critics?

Psychologists sometimes react by saying, "Oh, you mean the trans-

fer problem." But I do-not mean anything analogous to experiments on

whether students who were taught algebra last year automatically learn

geometry more easily than students who spent last year doing gymnastics.

I am asking whether one can identify and teach (or foster the growth of)

something other than algebra or geometry, which; once learned, will make

it easy to learn algebra and geometry. No doubt, this other thing

(let's call it the MWOT) can only be taught by using particular topics

as vehicles. But the "transfer" experiment is profoundly changed if

the question is whether one can use algebra as a vehicle for deliberately

teaching transferable general concepts and skills. The conjecture

underlying this essay is avery qualified affirmative answer to this

question. Yes, one can use algebra as a vehicle for initiating students

to the mathematical way of thinking. But, to do so effectively one

should first identify as far as possible components of the general

intellectual skills one is trying to teach; and when this is done it will

appear that algebra (in any traditional sense) is not a particularly

good vehicle.

The alternative choices of vehicle described below all involve

using computers, but in a way that is very different from the usual
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suggestions of using them either as "teaching machines" or as

"super-slide-rules". In our ideal of a school matheMatical laboratory

the computer is used as a means to control physical processes in order

to achieve definite goals . . . for example as part of an auto -pilot

system to fly model airplanes; or as the "nervous system"cf a model

animal with balancing reflexes, walking ability, simple visual ability

and so on. To achieve these goals mathematical principles are needed;

conversely in this context Mathematical principles become sources of

power, thereby acquiring meaning for large categories of students who.

fail to see any point or pleasure in bookish math and who, under pre-

vailing school conditions, simply drop out by labelling themselves

"not mathematically minded."

The too easy acceptance of this takes the form: "Yes, applical

tions are motivating:" But "motivation" fails.to distinguish alienated

work for a material or social reward frbm a true personal involvement.

To develop this point I need to separate abumber of aspects of the way

the child relates to his work.

A simple, and important one, is the time scale. A child interested

in flying model airplanes under computer control will work at this project

over a long period. He will have time to try different approacheS to

sub-problems. He will have time to talk about it, to establish a

common language with a collaborator or an instructor, to relate it to

other interests and problems. This project-oriented approach contrasts

with the problem approach of most math teaching: a bad feature of the

typical problem is that the child does not, stay with it long enough to

benefit much from success or from failure.

Along with time scale goes structure. A project is long enough

to have recognizable phases -- such as planning, choosing a strategy

of attempting a very simple case first, finding the simple solution,

debugging it, and so on. And if the time scale is long enough, and the

structures clear enough, the child can develop a vocabulary for articulate

discussion of the process of working towards his goals.

I believe in articulate discbssion (in monologue or dialogue)

of how one solves problems, of why one goofed that one, of what gaps

or deformations exist in one's knowledge and of what could be done about
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it.- I shall defend this belief against two quite distintt objections.

One objection says: "it's_impossibleto verbalize; problems are solved

by intuitive acts of insight and these canhotbe'artitUlated." The

other objection says: "it's bad to verbalize;- emember the centipede

who was paralyzed when the toad asked which leg came after which."

One must beware of quantifier mistakes when discussing these

objections. For example, J.S. Bruner tells us (in his book Towards a

Theory of Instruction) that he finds words and diagrams "impotent" in

getting a child to ride a bicycle. But while his evidence sho?is (at best)

that some words and diagrams are impotent, he suggests the conclusion

that all words and diagrams_ are impotent. The interesting conjecture is

this: the -impotence Of words 'and_diagrams used by Bruner is explicable

by_BrUner1t,-tUltural origins; the vocabulary and_ tonceptual framework

of classical psytholtogy is simply inadequate- for'the-descriptiOk of such

dynamic processes as Tidihg a bicycle: To push the rhetoric further, I

suspect that if Bruner tried to write a. program to make an IBM 360 drive

a radio controlled motorcycle, he Would have to conclude (for the sake

of consistency) that the order code of the 360 was impotent for this

task. Now, in our labOratory'we have.studed how people balance

bicycles and more complicated devices such as unicycles and circus balls.

There is nothing complex or Mytterious or Undescribable about these

processes. We can describe them in a non-impotent way provided that

a suitable descriptive system has been set up in advance. Key components.

of the descriptive systeM rest on concepts like: the idea of a

"first order" or "linear" theory in which,control variables can be

assumed to act independently; or the idea of feedback.

A fundamental problem for the theory of mathematical education

is to identify and name the concepts needed to enable the _beginner to

discuss his mathematical thinking in a clear articulate way. And when

we know such concepts we may want to seek out (or invent!) areas of

mathematical work which exemplify these concepts particularly well.

The next section of this essay will describe a new piece of mathematics

with the property that it allows clear discussion and simple models of

heuristics that are foggy and confusing for beginners when presented

in the context of more traditional elementary mathematics.
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2. Turtle Goemetry: A Piece of Learnable and Lovable Mathematics

The physical context for the following discussion is a quintuple

consisting of a child, a teletype machine, a computer, a large flat

surface and an apparatus called a turtle. A turtle is a cybernetic

toy capable of moving forward or back in a particular direction (relative

to itself) and of rotating about its central axis. It has a pen) which

can be in two states called PENUP and PENDOWN. The turtle is made to

act by typing commands whose effect is illustrated in Figure 1.

Figure 1: TURTLE LANGUAGE

At any time the turtle is at _a .particular place and facinv in

a particular direction. The place and direction together,are the turtle's

geometric state. The picture shows the turtle in a field, used here only

to give the reader a frame of reference:

FORWARD 50

LEFT 90

The triangular (4)

picture shows
the direction.

FORWARD 150

LEFT 135

The turtle ad- (5)
vanCed 50 units
in the direction
it was facing.

The turtle's posi- (6)

tion remained fixed.
It rotated 90° to
the left. So its
direction changed.

O

PENDOWN

The turtle advanced
150 units in its new
direction.

The turtle rotated
left 135°.

(Produces.no visible
effect. But the next
FORWARD instruction
will leave a trace.)

!The effect of PENDOWN
is to put the turtle
in a state to leave
a trace: the, pen draws
on the ground.
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(a) Direct Commands

The following =hands will cause the turtle to draw Figure 2.

PENDOWN
FORWARD 100
RIGHT 60
FORWARD 100

BACK 100
LEFT 120
FORWARD 100

PEACE.

(b) Defining a procedure

The computer is assumed to accept the language LOGO (Which we

have developed expressly for the purpose of teaching children, not

programming but mathematics). The LOGO idiom for asserting the fact

that we are-about ta define a procedure is illustrated by the following

example. We first decide Oh a name for the procedure. Suppose we

choose "PEACE". Then we type:

TO PEACE '0

1 FORWARD 100
2 RIGHT 60
3 FORWARD 100
4 BACK 100
5 LEFT 120
6 'FORWARD 100

END

These are directions telling the computer
how to PEACE. The word "TO" informs the
computer that the next word, "PEACE", is
being defined and that the numbered lines
constitute its definition.

The turtle doesn't Move while we are typing this. The word "TO" and the

line numbers indicated that we were not telling it to go forward and so on;

rather we were telling it how to execute the-new command. When we have

indicated by the word "END" that our definition is complete the machine

echoes back:

PEACE DEFINED

and now if we type

PENDOWN
PEACE

the turtle will carry out the commands and draw Figure 2. Were we to
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omit the command "PENDOWN" it would go thrc:Igh the-motions of drawing

it without leaving a visible trace.

The peace sign in Figure 2 lacks a circle. How can we describe

a circle in turtle language?

An idea that easily presents itself to mathematicians is: let

the turtle take a tiny step forward, then turn a tiny amount and keep

doing this. Thi might not quite produce a circle, but it is a good

first plan, so let's begin=to work on it. So WE define a procedure:

TO CIRCUS
1 FORWARD 5
2 RIGHT 7
3 CIRCUS
END

Notice two features

(a) The procedure refers to itself in line 3. This looks .

circular (though not in the sense we require) but really is not. The

effect is merely to set up a never-ending process by getting the computer

into the tight spot yolt would be in if you were the kind of person who

cannot fail to keep a pronise and you had been tricked into saying,

"I promise to repeat the sentence I just said."

(b) We selected the numbers 5 and 7 because they seemed small,

but without.a firm idea of what would happen. However an advantage of

having a computer is that we can try our procedure to see what it does.

If an undesirable effect follows we can always debug, it; in this case,

perhaps, by choosing different flusters. If, for example, the turtle

drew something like Figure 3a, we would say to ourselve , "It's not

turning enough" and replace 7 by 8; on the other hand if it drew

Figure 3b we might replace 7 by 6.

Figure 3a Figure 3b



I wish t could collect statistics about how many mith'matically

sophisticated relders fell into my trap! Experience shows that a large

proportion of math graduate students will do so. In fact, the procedure

cannot generate either 3a or*3b! If it did, it would surely go on to

produce an infinite spiral. And one can easily see that this is impossible

since the same sequence of commands would have to produce parts of the

curve that are almost flat, and other parts that are very curved. More

technically, one can see that the procedure CIRCUS must produce a close

approximation to a circle (i.e. what is, for all practical purposes a

circle) because it must produce a curve of constant curvature.

One can come to the same conclusion from a more general theorem.

We call procedures like CIRCUS ".fixed instruction procedures" because

they contain no variables.

THEOREM: Any-frgure generated by fixed-instruction procedure can

be bounded either by a circle or by two parallel straight lines.

Examples of figures that can and that cannot be so sounded are

shown in Figure 4.

A Figure Bounded by parallel lines

Figure 4.

A Figure Bounded neither by

parallel lines nor by a circle.
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We now show how to make pre urea with inputs in the sense

that the coumiand 'FORWARD has .a number, called an input, associated with

it. The next example shows how we ao so. (Tile words on the title line

preceded by ":" are names of the inputs, rather like the x'$ in school

algebra.) In the fifth grade class we rc :NUMBER as dots NUMBER or
as AthetqnmLof:NUSLRI, emphasizing that what is being discussed is

not the word "NUMBER" but a thing of which this word is the name.

TO POLY :STEP :ANGLE
1 FORWARD :STEP
2 LEFT :ANGLE
3 POLY :SYEP :ANGLE
END

This procedure gznerates-a-rather-wonderful collection of pictures. as

we give it different inputs.

Although-POLY has .provision for inputs it is really a fixed

instruction procedure. To create one that is not, -we change the last line

of POLY. We change the title also, though we do not need to do so.

Old Procedare New Procedure

TO POLY :STEM :ANGLE TO POLYSPI :STEP :ANGLE
1 FORWARD.:STEP 1 FORWARD :STEP .

2 LEFT :ANGLE 2 LEFT :ANGLE
3 POLY :STEP :ANGLE 3 POLYSPI :STEP+20 :ANGLE
END END

The effect of POLYSPI is shown in Figure 5.

2.9.Y.115

POLYSPI 5 90

or

Squiral



We have seen we can use POLY to draw a circle. Can we now use

it to draw our peace sign? We could, but will do better to make a -

procedure, here called ARC whose-effect will be to draw any circular

segment given the diameter and the angle to be drawn as in Figure 6.

The procedure is as follows where in line 2 a special constant called

"PIE" is used and the asterisk sign is used for multiplication. (Do not

assulue that :PIE is what its name suggests.)

TO ARC :DIAM :SECTOR
1 IF :SECTOR=0 STOP
2 FORWARD :PIE*:DIAM
3 RIGHT 1

4 ARC :DIAM :SECTOR-1
END

We can now make a procedure using the old procedure PEACE as a

sub-procedure:

TO SUPERPEACE

1 ARC 200 360
2 RIGHT 90

3 PEACE

END SUPERPEACE

Figure 6

Better yet we mild rewrite PEACE to have inputs. For example:

TO PEACE :SIZE
1 FORWARD :SIZE
2 RIGHT 60
3 FORWARD :SIZE
4 BACK :SIZE
5 LEFT 120
6 FORWARD :SIZE
7 RIGHT 90
8 ARC 2*:SIZE 360

Then peace signs of different sizes. can be made by the commands:

PEACE 100

PEACE 20

and so on.
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We can use the command ARC to draw a heart:

TO HEART :SIZE
1 ARC :SIZE/2 180
2 RIGHT 180
3 ARC :SIZE/2 180
4 ARC :SIZE*2 60
5 RIGHT 60
6 ARC :SIZE*2 60
END

MINITHEOREM: A heart can be made of four circular arcs.

We can also use it to draW allower. Notice in the following the charac-!

.teristic building of new definitions on old ones.

A computer program to.draw this flower

uses the geometric Observation that petali can

be decomposed (rather surprisingly° as two

quarter circles. So let's assume we have a

procedure called TO QCIRCLE whose effect is

shown by the-examples. Some of them show

initial and final positions of the turtle,

some do not.

QCIRCLE 50

QCIRCLE 100

Now let's see how to make a petal.

TO PETAL :SIZE
1 QCIRCLE :SIZE
2 RIGHT 90
3 QCIRCLE :SIZE
END

PETAL.100



TO FLOWER :SIZE
1 PETAL :SIZE
2 PETAL :SIZE
3 PETAL :SIZE
4 PETAL :SIZE
END

TO STEM :SIZE
1 RIGHT 180.
2 FORWARD 2*:SIZE
3 RIGHT 90
4 PETAL :SIZE/2
5 FORWARD :SIZE
END

TO PLANT :SIZE
1 PENDOWN
2 FLOWER :SIZE
3 STEM :SIZE
4 PENUP
END

Now let's play a little.

TO HEXAFLOWER :SIZE
1 RIGHT.:90

2 FORWARD 4*:SIZE
3 PLANT :SIZE
4 :SIZE

5 30
6 HEXAFLOWER :SIZE
END

-13-

FLOWER 100

PLANT 50

HEXAFLOWER 50

STEM 100
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3. Creativity? Mathematics?

In classes run by members of the M.I.T. Artificial Intelligence

Laboratory we have taught this kind of geometry to fifth graders, some

of whom were in the lowest categories of performance in "mathematics".

Their attitude towards mathematics as normally taught was well expressed

by a fifth grade girl whc' said firmly, 'Mere ain't nothing fun in math!"

She did not classify working with the computer as math, and we saw no

reason to disabuse her. There will be time for her to discover that

what she is learning to do in an exciting and personal way will elucidate

those strange rituals she meets in the math class.

Typical activities in'early stages of work with children of

this age is exploring the behavior of the procedure POLY by giving it

different inputs. There is inevitable challenge -- and competition --

in producing beautiful or spectacular, or just different effects. One

gets ahead in the game by discovering a new phenomenon and by finding

out what classes of angles will produce it.

The real excitement comes when one becomes courageous enough to

change the procedure itself. For example making the change "to POLYSPI

occurs to some children and, in our class, led to a great deal of

excitement around the truly spontaneous discovery of the figure now

called a squiral (Figure 5). (Note: By spontaneous I mean, amongst

other things, to exclude the situation of the discovery teacher standing

in front of the class soliciting pseudo-randomly generated suggestions.

The squiral was found by a child sitting all alone at his computer

terminal!) By no means all the children will take this step -- indeed

once a few hive done so it'becomes derivative for the others. Nevertheless,

we might encourage them to explore inputs to POLYSPI. There is room

here for the discovery of more phenomena. For example, taking :ANGLE

as 120 produces a neat triangular spiral. But 123 produces a very

different phenomena.
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Figure 7

POLYSPI 5 120

What else produces similar effects?

Figure 8

POLYSPI 5 121

POLYSPI 5 123

POLYSPI 5 93



The possibilities for original minor discoveries are great.

One girl became excited for the first time about mathematics by

realizing how easy it was to make a program for Figure 9 by

(1) observing herself draw a similar figure

(2) naming the elements of her figure -- "BIG" and "SMALL" --

so that she could talk about them and so describe what

she was doing

(3) describing it in LOGO

TO GROWSHRINK :BIG :SMALL
1 FORWARD :BIG
2 RIGHT 90
3 FORWARD :SMALL
4 RIGHT 90
5 GROWSHRINK :BIG-10 :SMALL+10
END

Figure 9

)
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The possibilities are endless. These are small discoveries. But

perhaps one is already closer to mathematics in doing this than in

learning new formal manipulations, transforming bases, intersecting

sets and drifting through misty lessons on the difference between

fractions, rationals and equivalence classes of pairs of integers.

Perhaps learning to make small discoveries puts one more surely on

a path to making big ones than does faultlessly learning any number

of sound algebraic concepts.

1
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4. Some Physical Mathematics

The turtle language is appropriate for many important physical

problems,. Consider, for example, the problem of understanding planetary

orbits as if one were a junior high school student. One would find

conceptual barriers of varying degrees of difficulty. Certainly the

idea of the inverse square law is simple enough. Somewhat harder is the

representation of velocities, accelerations and forces as vectors. But

the insuperable difficulty in.reading a text on the subject comes from

the role of differential equations. The really elegant and intelligible

physical ideas give rise to local differential descriptions of orbits;

translating those into global ones usually involves going through the

messy business called "solving" differential equations.

Turtle geometry -helps at all these points. The use of vectors

is extremely natural. And the local differential i-deicription takes the

form of a procedure that can be run so as to produce a drawing of a

solution or studied using theorems and analytic concepts about procedures.

The framework for thinking about orbital theory-i-n-turOe terms

presupposes prior contact with the concepts of state and of quantized

time -- both of which occur very easily and naturally in many computa-

tional situations. The state of the "planet" is its position and a

certain vector called, say "JUMP". If the planet were left alone it

would move by :JUMP at every clock time. Thus it would go off, forever,

in a straight line. In the presence of the sun, we think of it as

undergoing two movements: it moves by :JUMP and then it falls into the

suns To make this more precise we put these two actions together- using_

a procedure called "VECTORADD", which could be defined by the children

or given as a primitive. Thus we obtain a LOGO procedure whose general

idea will be intelligible to readers who try hard enough. (Two helpful

comments: MAKE is the LOGO idiom for assignment, or setting values,

so that line 1 in the procedure will cause the quantity

VECTORADD OF :JUMP AND FALL to be computed and given the name "NEWJUMP".

This computation assumes the existence of another procedure, called

"FALL", which will compute the "fall into the sun vector". These ideas

might seem confusing when presented fast; ten year old children under-

stand them fluently when they are presented properly.)
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TO FLY :JUMP
1 MAKE

NAME "NEWJUMP"
THING VECTORADD OF :JUMP AND FALL

2 SETHEADING (DIRECTION :NEWJUMP)
3 FORWARD (LENGTH :NEWJUMP)
4 FLY :NEWJUMP
END

Using this same idea one can easily deal in an experimental way

with three bodies; one can design space-ship orbits, synchronous

satellites and so on endlessly.
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5. Control Theory as a Grade School Subject or Physics in the Finger Tiffs

We begin by inviting the reader to carry out the illustrated

experiments -- or to recall doing something similar.

One of the goals of this unit of study will be to understand

how people do this and particularly to understand what properties of a

human being determine what objects he can and what objects he cannot

balance.

A "formal physical" model of the stick balancing situation is

provided by the apparatus illustrated next:

WEIGHT CLAMP: VARIABLE
MASS AND POSITION

LIGHT
RIGID
ROD HINGE WITH 1 DEGREE

OF FREEDOM

CHILD KEEPS ROD FROM
FALLING BY PUSHING
TRUCK BACK AND FORTH

TRUCK

RAIL TO MAKE PROBLEM
1 DIMENSIONAL
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Co) Co)

WIRE TO
COMPUTER

TURTLE KEEPS ROD FROM FALLING
BY MOVING FORWARD AND BACK.
POTENTIOMETER IN HINGE PROVIDES
INFORMATION FOR FEEDBACkt.

A computer controlled version replaces the track and the child

by a turtle with the angle sensor plugged into its sensor socket. A

simple minded procedure will do a fair amount of balancing (provided that

the turtle is fast11):

TO BALANCE
1 TEST ANGLE > 10
2 IFTRUE FORWARD 8
3 TEST ANGLE '( -10
4 IFTRUE BACK 8
5 WAIT 1
6 BALANCE
END

This procedure is written as part of a project plan that begins by saying:

neglect all complications, try something. Complications that have been

neglected include:

(1) The'end of the line bug.

(2) The overshoot bug.
(Perhaps in lines 2 and 4 the value 8 is too much or
too little.)

(3) The Wobbly Bug

The TEST in the procedure might catch the rod over to
the left while it is in rapid motion towards the right.
When this happens westiould leave well alone!
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One by one these bugs, and others can be eliminated. It is not

hard to build a program and choose constants so that with a-given setting

of the movable weight, balance will be maintained for long periods of time.
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6. What are the Primitive Concepts of Mathematics?

To see points and lines as the primitive concepts of geometry

is to forget not only the logical primitives (such as quantifiers) but

especially the epistemological primitives, such as the notion of a

mathematical system itself. For most children at school the problem is

not that they do not understand particular mathematical structures or

concepts. Rather, they do not understand what kind of thing a mathematical

structure is: they do not see the point of the whole enterprise. Asking

them to learn it is like asking them to learn poetry in a completely

unknown foreign language.

It is sometimes said that in teaching mathematics we should

emphasize the process of mathematization. I say: excellent! But on

condition that the child should have the experience of mathematizing

for himself. Otherwise thi word "mathematizing" is just one more

scholastic term. The thrust of the explorations I have'been describing

is to allow the child to have living experiences of mathematizing as an

introduction to mathematics. We have seen how he mathematizes a heart,

a squiral, his own behavior in drawing a GROWSHRINK, the process of

balancing a stick, and so on. When mathematizing familiar processes

is a fluent, natural, enjoyable activity, then is the time to talk about

mathematizing mathematical structures, as in a good pure course on

modern algebra.

But what are the ingredients of the process of mathematizing?

Is it possible to formulate and teach knowledge about how one is to

tackle for example, the problem of setting up a mathematical representation

of an object such as the hearts and flowers we discussed earlier?

Our answer is very definitely affirmative, especially in the

context of the.kind of work described above. Consider for example, how

we would teach children to go about problems like drawing a heart.

First step we say: if you cannot solve the problem as it stands, try

simplifying it; if you cannot find a complete solution, find a partial

one. No doubt everyone gives similar advice. The difference is that

in this context the advice is concrete enough to be followed by children

who seem quite impervious to the usual math.
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A simplification of the heart probler: is to settle, as a first

approximation, on a triangle; which we then consider to be I very primitive

heart.

TO TRI
1 FORWARD 100
2 RIGHT 120
3 FORWARD 100
4 RIGHT 120
5 FORWARD 100
END

TRI

Ncll that we have this construction firmly in hand we can allow ourselves

to modify it so as to make: it a better heart. The obvious plan is to

replace the horizontal line by a structure line. So we write a procedure

to make this. First choose tt a name, say "TOP", then write;

TO TOP :SIZE
1 ARC :SIZE/2 180
2 RIGHT 180
3 ARC :SIZE/2 180
END

cvm
TOP

Replacing line 1 in TO TRI by TOP we get:

TO TRI
1 TOP 100
2 RIGHT 120
etc.

HEART WITH BUG

The effect is as shown! Is this a failure? We might have'sa classifitd

it (and ourselves!) if we did not have another heuristic concept:

BUGS and DEBUGGING. Our procedure did not fail. It has a perfectly

intelligible pug; To find the bug we follow the procedure through in a

very FORMAL way. (Formal is another concept we try to teach.) We soon

find that the trouble is in line 2. Also we can see why. Replacing
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line 1 by TOP did what we wanted, but it also produced a SIDE-EFFECT. .

(Another important concept.) It left the turtle facing in a different

direction. Correcting it is a mere matter of changing line 2 to RIGHT 30.

And then we can go on to make the fully curved heart. Unless we decide

. that a straight-sided one is good enough for our purposes.

Straight-sided Heart Curved Heart

Our image of teaching mathematics concentrates on teaching

concepts and terminology to enable children to be articulate about the

process of developing a mathematical analysis. Part of doing so is

studying good models (such as the heart anecdote) and-getting a lot of

practice in describing one's own attempts at following the pattern of

the model in other problems. It seems quite paradoxical that in develop-

ing mathematical curricula, whole conferences of superb mathematicians

are deVoted to discussing the appropriate-language for expressing the

formal part of mathematics, while the individual teacher or writer of

text-books is left to decide how (and even whether) to deal with heuristic

concepts.

In summary, we have advanced three central theses:

(1) The non-formal mathematical primitives are

neglected in most discussions of mathematical curricula.

(2) That the choice of content material, especially for

the early years, should be made primarily as a function

of its suitability for developing heuristic concepts,

and

(3) Computational mathematics, in the sense illustrated by

turtle geometry, has strong advantages in this respect

over "classical" topics.


